Algebraic Geometry: Elliptic Curves and 2 Theorems

Chris Zhu
Mentor: Chun Hong Lo MIT PRIMES

December 7, 2018

Rational Parametrization

- Plane curves: finding rational points on such curves

Rational Parametrization

- Plane curves: finding rational points on such curves
- Motivation: studying structures involving the rationals is generally nicer

Rational Parametrization

- Plane curves: finding rational points on such curves
- Motivation: studying structures involving the rationals is generally nicer
- Linear and quadratic equations: formulas exist!

Rational Parametrization

- Plane curves: finding rational points on such curves
- Motivation: studying structures involving the rationals is generally nicer
- Linear and quadratic equations: formulas exist!

ת ת

Rational Parametrization (cont'd)

■ Rational x-coordinates give rational y-coordinates on a line

Rational Parametrization (cont'd)

- Rational x-coordinates give rational y-coordinates on a line
$■\left(\frac{m}{n}, 0\right)$ is projected onto the circle as $\left(\frac{2 m n}{m^{2}+n^{2}}, \frac{n^{2}-m^{2}}{n^{2}+m^{2}}\right)$

Rational Parametrization (cont'd)

- Rational x-coordinates give rational y-coordinates on a line
- $\left(\frac{m}{n}, 0\right)$ is projected onto the circle as $\left(\frac{2 m n}{m^{2}+n^{2}}, \frac{n^{2}-m^{2}}{n^{2}+m^{2}}\right)$
- Extending projection to degree 3 :

Finding Rational Points on Elliptic Curves

Connecting 2 points on an elliptic curve is similar to standard addition.

Finding Rational Points on Elliptic Curves

Connecting 2 points on an elliptic curve is similar to standard addition.
■ We are very familiar with structures like \mathbb{Z} which use addition

Finding Rational Points on Elliptic Curves

Connecting 2 points on an elliptic curve is similar to standard addition.
■ We are very familiar with structures like \mathbb{Z} which use addition

- To understand rational points on elliptic curves, can we give them similar structure?

Finding Rational Points on Elliptic Curves

Connecting 2 points on an elliptic curve is similar to standard addition.

- We are very familiar with structures like \mathbb{Z} which use addition
- To understand rational points on elliptic curves, can we give them similar structure?

If we can assign such a structure, finding rational points is a lot simpler:

Example.

\mathbb{Z} is generated by -1 or $1 ; \mathbb{Z} / 7 \mathbb{Z}=\{0,1,2,3,4,5,6\}$ is generated by anything but 0 .

Instead of looking for all rational points, we can try to find a generating set.

What is a Group?

A group (G, \circ) is a set G with a law of composition $(a, b) \mapsto a \circ b$ satisfying the following:

■ Associativity: $(a \circ b) \circ c=a \circ(b \circ c)$
■ Identity element: $\exists e \in G$ such that $a \circ e=e \circ a=a$
■ Inverse element: for $a \in G, \exists a^{-1} \in G$ such that $a \circ a^{-1}=$ $a^{-1} \circ a=e$

What is a Group?

A group (G, \circ) is a set G with a law of composition $(a, b) \mapsto a \circ b$ satisfying the following:

■ Associativity: $(a \circ b) \circ c=a \circ(b \circ c)$
■ Identity element: $\exists e \in G$ such that $a \circ e=e \circ a=a$
■ Inverse element: for $a \in G, \exists a^{-1} \in G$ such that $a \circ a^{-1}=$ $a^{-1} \circ a=e$

Example.

$(\mathbb{Z},+)$ and $\left(\mathbb{Z}_{n},+\right)$ are groups, as well as $\left(\mathrm{GL}_{2}(\mathbb{R}), \times\right)$ where $\mathrm{GL}_{2}(\mathbb{R})=\left\{\left.A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{R}\right.$ and A is invertible $\}$.

Elliptic Curve Group Structure

If we tweak the "addition" of points mentioned before, we get a group structure for the rational points on an elliptic curve!

Elliptic Curve Group Structure

If we tweak the "addition" of points mentioned before, we get a group structure for the rational points on an elliptic curve!

But, what about...

Elliptic Curve Group Structure

If we tweak the "addition" of points mentioned before, we get a group structure for the rational points on an elliptic curve!

But, what about...

- Identity?

Elliptic Curve Group Structure

If we tweak the "addition" of points mentioned before, we get a group structure for the rational points on an elliptic curve!

But, what about...

- Identity?

■ Tangent lines?

Solution: Projective Geometry

Definition.

(Projective space) Define the equivalence relation \sim by $\left(x_{0}, x_{1}, \ldots, x_{n}\right) \sim$ $\left(y_{0}, y_{1}, \ldots, y_{n}\right)$ if $\exists \lambda \in k$ such that $y_{i}=\lambda x_{i}$. Then, we define real projective n-space as

$$
\mathbb{P}^{n}=\frac{\mathbb{R}^{n+1}-\{0\}}{\sim}
$$

Solution: Projective Geometry

Definition.

(Projective space) Define the equivalence relation \sim by $\left(x_{0}, x_{1}, \ldots, x_{n}\right) \sim$ $\left(y_{0}, y_{1}, \ldots, y_{n}\right)$ if $\exists \lambda \in k$ such that $y_{i}=\lambda x_{i}$. Then, we define real projective n-space as

$$
\mathbb{P}^{n}=\frac{\mathbb{R}^{n+1}-\{0\}}{\sim}
$$

Why does this definition help us?

Solution: Projective Geometry

Definition.

(Projective space) Define the equivalence relation \sim by $\left(x_{0}, x_{1}, \ldots, x_{n}\right) \sim$ $\left(y_{0}, y_{1}, \ldots, y_{n}\right)$ if $\exists \lambda \in k$ such that $y_{i}=\lambda x_{i}$. Then, we define real projective n-space as

$$
\mathbb{P}^{n}=\frac{\mathbb{R}^{n+1}-\{0\}}{\sim}
$$

Why does this definition help us?
■ Added "points at infinity" - \mathbb{P}^{1} can be seen as $\mathbb{R}^{1} \cup \infty$ and \mathbb{P}^{2} as $\mathbb{R}^{2} \cup \mathbb{P}^{1}$.

Solution: Projective Geometry

Definition.

(Projective space) Define the equivalence relation \sim by $\left(x_{0}, x_{1}, \ldots, x_{n}\right) \sim$ $\left(y_{0}, y_{1}, \ldots, y_{n}\right)$ if $\exists \lambda \in k$ such that $y_{i}=\lambda x_{i}$. Then, we define real projective n-space as

$$
\mathbb{P}^{n}=\frac{\mathbb{R}^{n+1}-\{0\}}{\sim}
$$

Why does this definition help us?
■ Added "points at infinity" - \mathbb{P}^{1} can be seen as $\mathbb{R}^{1} \cup \infty$ and \mathbb{P}^{2} as $\mathbb{R}^{2} \cup \mathbb{P}^{1}$.

- Bézout's theorem guarantees 3 intersection points

Elliptic Curve Group Structure (cont'd)

Now we can answer our questions from before about the group structure of the rational points: point at infinity on the curve, denoted \mathcal{O}, is the identity.

Elliptic Curve Group Structure (cont'd)

Tangent lines do have " 3 " intersections:

Group Properties Regarding Elliptic Curves

The group of rational points on an elliptic curve E is denoted as $E(\mathbb{Q})$.

Definition.

An element P of a group G is said to have order m if m is the minimal natural number satisfying $m P=P \circ P \circ \ldots \circ P$ (m times) $=e$. If no such m exists, P has infinite order.

Group Properties Regarding Elliptic Curves

The group of rational points on an elliptic curve E is denoted as $E(\mathbb{Q})$.

Definition.

An element P of a group G is said to have order m if m is the minimal natural number satisfying $m P=P \circ P \circ \ldots \circ P$ (m times) $=e$. If no such m exists, P has infinite order.

Example.

The order of every element in $(\mathbb{Z} / 8 \mathbb{Z})^{\times}$is 2 .

Group Properties Regarding Elliptic Curves

The group of rational points on an elliptic curve E is denoted as $E(\mathbb{Q})$.

Definition.

An element P of a group G is said to have order m if m is the minimal natural number satisfying $m P=P \circ P \circ \ldots \circ P$ (m times) $=e$. If no such m exists, P has infinite order.

Example.

The order of every element in $(\mathbb{Z} / 8 \mathbb{Z})^{\times}$is 2 .

Definition.

The torsion subgroup of a group G is the set of all elements of G with finite order.

- Can we determine $E(\mathbb{Q})_{\text {tors }}$?

Group Properties Regarding Elliptic Curves (cont'd)

Definition.

A set $S \subset G$ for a group G is a generating set if all elements can be written as combinations of elements in S under the group operation.

Group Properties Regarding Elliptic Curves (cont'd)

Definition.

A set $S \subset G$ for a group G is a generating set if all elements can be written as combinations of elements in S under the group operation.

Example.

The rationals are generated by the (infininte) set of unit fractions $\frac{1}{n}$ with $n \in \mathbb{N}$.

Group Properties Regarding Elliptic Curves (cont'd)

Definition.

A set $S \subset G$ for a group G is a generating set if all elements can be written as combinations of elements in S under the group operation.

Example.

The rationals are generated by the (infininte) set of unit fractions $\frac{1}{n}$ with $n \in \mathbb{N}$.

- Can we determine the generating set for $E(\mathbb{Q})$, and is it finite or infinite?

The Nagell-Lutz Theorem

Theorem.

Let $y^{2}=x^{3}+a x^{2}+b x+x$ be a non-singular elliptic curve with integral coefficients, and let D be the discriminant of the polynomial, $D=-4 a^{3} c+a^{2} b^{2}+18 a b c-4 b^{3}-27 c^{2}$. Any point (x, y) of finite order must have $x, y \in \mathbb{Z}$ and $y \mid D$.

The Nagell-Lutz Theorem

Theorem.

Let $y^{2}=x^{3}+a x^{2}+b x+x$ be a non-singular elliptic curve with integral coefficients, and let D be the discriminant of the polynomial, $D=-4 a^{3} c+a^{2} b^{2}+18 a b c-4 b^{3}-27 c^{2}$. Any point (x, y) of finite order must have $x, y \in \mathbb{Z}$ and $y \mid D$.

Remark.

There is a stronger form of the theorem which includes $y^{2} \mid D$.

The Nagell-Lutz Theorem

Theorem.

Let $y^{2}=x^{3}+a x^{2}+b x+x$ be a non-singular elliptic curve with integral coefficients, and let D be the discriminant of the polynomial, $D=-4 a^{3} c+a^{2} b^{2}+18 a b c-4 b^{3}-27 c^{2}$. Any point (x, y) of finite order must have $x, y \in \mathbb{Z}$ and $y \mid D$.

Remark.

There is a stronger form of the theorem which includes $y^{2} \mid D$.

Example.

The points $\{\mathcal{O},(1,1),(0,0),(1,-1)\}$ are the points of finite order on $y^{2}=x^{3}-x^{2}+x$.

The Nagell-Lutz Theorem (cont'd)

Example.

Given a prime $p, E(\mathbb{Q})_{\text {tors }}$ for $y^{2}=x^{3}+p x$ is always $\{\mathcal{O},(0,0)\}$.

The Nagell-Lutz Theorem (cont'd)

Example.

Given a prime $p, E(\mathbb{Q})_{\text {tors }}$ for $y^{2}=x^{3}+p x$ is always $\{\mathcal{O},(0,0)\}$.

Mordell's Theorem

Theorem.

(Mordell's Theorem) Let E be a non-singular elliptic curve with a rational point of order 2 . Then $E(\mathbb{Q})$ is a finitely generated abelian group.

Any finitely generated abelian group G can be written as $\mathbb{Z}^{r} \oplus G_{\text {tors }}$, where r is called the rank. The rank can be computed by solving some Diophantine equations.

Mordell's Theorem

Theorem.

(Mordell's Theorem) Let E be a non-singular elliptic curve with a rational point of order 2 . Then $E(\mathbb{Q})$ is a finitely generated abelian group.

Any finitely generated abelian group G can be written as $\mathbb{Z}^{r} \oplus G_{\text {tors }}$, where r is called the rank. The rank can be computed by solving some Diophantine equations.

Example.

Given a prime p, the rank of $y^{2}=x^{3}+p x$ is either 0,1 , or 2 .

Extras

Theorem.

(Mazur's Theorem) Let E be a non-singular cubic curve with rational coefficients, and suppose $P \in E(\mathbb{Q})$ has order m. Then either $1 \leq m \leq 10$ or $m=12$. The only possible torsion subgroups are isomorphic to $\mathbb{Z} / N \mathbb{Z}$ for $1 \leq N \leq 10$ or $N=12$, or $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 N \mathbb{Z}$ for $1 \leq N \leq 4$.

Extras

Theorem.

(Mazur's Theorem) Let E be a non-singular cubic curve with rational coefficients, and suppose $P \in E(\mathbb{Q})$ has order m. Then either $1 \leq m \leq 10$ or $m=12$. The only possible torsion subgroups are isomorphic to $\mathbb{Z} / N \mathbb{Z}$ for $1 \leq N \leq 10$ or $N=12$, or $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 N \mathbb{Z}$ for $1 \leq N \leq 4$.
Genus-degree formula: $g=\frac{(d-1)(d-2)}{2}$ for curves in \mathbb{P}^{2}.

Theorem.

(Falting's Theorem) A curve of genus greater than 1 has only finitely many rational points.

Acknowledgements

I would like to thank the following:

Acknowledgements

I would like to thank the following:

- My mentor, Chun Hong Lo

Acknowledgements

I would like to thank the following:

- My mentor, Chun Hong Lo
- My parents

Acknowledgements

I would like to thank the following:

- My mentor, Chun Hong Lo
- My parents
- The PRIMES program

