Algebraic Geometry: Elliptic Curves and 2 Theorems

Chris Zhu

Mentor: Chun Hong Lo MIT PRIMES

December 7, 2018

Plane curves: finding rational points on such curves

- Plane curves: finding rational points on such curves
- Motivation: studying structures involving the rationals is generally nicer

- Plane curves: finding rational points on such curves
- Motivation: studying structures involving the rationals is generally nicer
- Linear and quadratic equations: formulas exist!

- Plane curves: finding rational points on such curves
- Motivation: studying structures involving the rationals is generally nicer
- Linear and quadratic equations: formulas exist!

Rational Parametrization (cont'd)

Rational x-coordinates give rational y-coordinates on a line

Rational Parametrization (cont'd)

■ Rational *x*-coordinates give rational *y*-coordinates on a line ■ $\left(\frac{m}{n}, 0\right)$ is projected onto the circle as $\left(\frac{2mn}{m^2 + n^2}, \frac{n^2 - m^2}{n^2 + m^2}\right)$

Rational Parametrization (cont'd)

- Rational x-coordinates give rational y-coordinates on a line
- $\left(\frac{m}{n},0\right)$ is projected onto the circle as

$$\left(\frac{2mn}{m^2+n^2},\frac{n^2-m^2}{n^2+m^2}\right)$$

• Extending projection to degree 3:

Finding Rational Points on Elliptic Curves

Connecting 2 points on an elliptic curve is similar to standard addition.

Connecting 2 points on an elliptic curve is similar to standard addition.

 \blacksquare We are very familiar with structures like $\mathbb Z$ which use addition

Connecting 2 points on an elliptic curve is similar to standard addition.

- \blacksquare We are very familiar with structures like $\mathbb Z$ which use addition
- To understand rational points on elliptic curves, can we give them similar structure?

Connecting 2 points on an elliptic curve is similar to standard addition.

- \blacksquare We are very familiar with structures like $\mathbb Z$ which use addition
- To understand rational points on elliptic curves, can we give them similar structure?

If we can assign such a structure, finding rational points is a lot simpler:

Example.

 $\mathbb Z$ is generated by -1 or 1; $\mathbb Z/7\mathbb Z=\{0,1,2,3,4,5,6\}$ is generated by anything but 0.

Instead of looking for all rational points, we can try to find a generating set.

What is a Group?

A group (G, \circ) is a set G with a law of composition $(a, b) \mapsto a \circ b$ satisfying the following:

- Associativity: $(a \circ b) \circ c = a \circ (b \circ c)$
- Identity element: $\exists e \in G$ such that $a \circ e = e \circ a = a$
- Inverse element: for $a \in G$, $\exists a^{-1} \in G$ such that $a \circ a^{-1} = a^{-1} \circ a = e$

What is a Group?

A group (G, \circ) is a set G with a law of composition $(a, b) \mapsto a \circ b$ satisfying the following:

- Associativity: $(a \circ b) \circ c = a \circ (b \circ c)$
- Identity element: $\exists e \in G$ such that $a \circ e = e \circ a = a$
- Inverse element: for $a \in G$, $\exists a^{-1} \in G$ such that $a \circ a^{-1} = a^{-1} \circ a = e$

Example.

$$(\mathbb{Z},+) \text{ and } (\mathbb{Z}_n,+) \text{ are groups, as well as } (\mathsf{GL}_2(\mathbb{R}),\times) \text{ where } \\ \mathsf{GL}_2(\mathbb{R}) = \left\{ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \ \middle| \ a,b,c,d \in \mathbb{R} \text{ and } A \text{ is invertible} \right\}.$$

|||||7 ||77|||455

If we tweak the "addition" of points mentioned before, we get a group structure for the rational points on an elliptic curve!

If we tweak the "addition" of points mentioned before, we get a group structure for the rational points on an elliptic curve!

But, what about...

If we tweak the "addition" of points mentioned before, we get a group structure for the rational points on an elliptic curve!

But, what about...

Chris Zhu

Identity?

If we tweak the "addition" of points mentioned before, we get a group structure for the rational points on an elliptic curve!

But, what about...

- Identity?
- Tangent lines?

(Projective space) Define the equivalence relation \sim by $(x_0, x_1, ..., x_n) \sim (y_0, y_1, ..., y_n)$ if $\exists \lambda \in k$ such that $y_i = \lambda x_i$. Then, we define real projective n-space as

$$\mathbb{P}^n = rac{\mathbb{R}^{n+1} - \{0\}}{\sim}.$$

(Projective space) Define the equivalence relation \sim by $(x_0, x_1, ..., x_n) \sim (y_0, y_1, ..., y_n)$ if $\exists \lambda \in k$ such that $y_i = \lambda x_i$. Then, we define real projective n-space as

$$\mathbb{P}^n = rac{\mathbb{R}^{n+1} - \{0\}}{\sim}.$$

Why does this definition help us?

(Projective space) Define the equivalence relation \sim by $(x_0, x_1, ..., x_n) \sim (y_0, y_1, ..., y_n)$ if $\exists \lambda \in k$ such that $y_i = \lambda x_i$. Then, we define real projective n-space as

$$\mathbb{P}^n = \frac{\mathbb{R}^{n+1} - \{0\}}{\sim}.$$

Why does this definition help us?

• Added "points at infinity" — \mathbb{P}^1 can be seen as $\mathbb{R}^1 \cup \infty$ and \mathbb{P}^2 as $\mathbb{R}^2 \cup \mathbb{P}^1$.

(Projective space) Define the equivalence relation \sim by $(x_0, x_1, ..., x_n) \sim (y_0, y_1, ..., y_n)$ if $\exists \lambda \in k$ such that $y_i = \lambda x_i$. Then, we define real projective n-space as

$$\mathbb{P}^n = \frac{\mathbb{R}^{n+1} - \{0\}}{\sim}.$$

Why does this definition help us?

- Added "points at infinity" \mathbb{P}^1 can be seen as $\mathbb{R}^1 \cup \infty$ and \mathbb{P}^2 as $\mathbb{R}^2 \cup \mathbb{P}^1$.
- Bézout's theorem guarantees 3 intersection points

Now we can answer our questions from before about the group structure of the rational points: point at infinity on the curve, denoted O, is the identity.

Elliptic Curve Group Structure (cont'd)

Tangent lines do have "3" intersections:

Group Properties Regarding Elliptic Curves

The group of rational points on an elliptic curve E is denoted as $E(\mathbb{Q})$.

Definition.

An element P of a group G is said to have order m if m is the minimal natural number satisfying $mP = P \circ P \circ ... \circ P$ (m times) = e. If no such m exists, P has infinite order.

Group Properties Regarding Elliptic Curves

The group of rational points on an elliptic curve E is denoted as $E(\mathbb{Q})$.

Definition.

An element P of a group G is said to have order m if m is the minimal natural number satisfying $mP = P \circ P \circ ... \circ P$ (m times) = e. If no such m exists, P has infinite order.

Example.

The order of every element in $(\mathbb{Z}/8\mathbb{Z})^{\times}$ is 2.

Group Properties Regarding Elliptic Curves

The group of rational points on an elliptic curve E is denoted as $E(\mathbb{Q})$.

Definition.

An element P of a group G is said to have order m if m is the minimal natural number satisfying $mP = P \circ P \circ ... \circ P$ (m times) = e. If no such m exists, P has infinite order.

Example.

The order of every element in $(\mathbb{Z}/8\mathbb{Z})^{\times}$ is 2.

Definition.

The torsion subgroup of a group G is the set of all elements of G with finite order.

• Can we determine $E(\mathbb{Q})_{tors}$?

A set $S \subset G$ for a group G is a generating set if all elements can be written as combinations of elements in S under the group operation.

A set $S \subset G$ for a group G is a generating set if all elements can be written as combinations of elements in S under the group operation.

Example.

The rationals are generated by the (infininte) set of unit fractions $\frac{1}{n}$ with $n \in \mathbb{N}$.

A set $S \subset G$ for a group G is a generating set if all elements can be written as combinations of elements in S under the group operation.

Example.

The rationals are generated by the (infininte) set of unit fractions $\frac{1}{n}$ with $n \in \mathbb{N}$.

Can we determine the generating set for E(Q), and is it finite or infinite?

The Nagell-Lutz Theorem

Theorem.

Let $y^2 = x^3 + ax^2 + bx + x$ be a non-singular elliptic curve with integral coefficients, and let D be the discriminant of the polynomial, $D = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2$. Any point (x, y) of finite order must have $x, y \in \mathbb{Z}$ and y|D.

Let $y^2 = x^3 + ax^2 + bx + x$ be a non-singular elliptic curve with integral coefficients, and let D be the discriminant of the polynomial, $D = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2$. Any point (x, y) of finite order must have $x, y \in \mathbb{Z}$ and y|D.

Remark.

There is a stronger form of the theorem which includes $y^2|D$.

Let $y^2 = x^3 + ax^2 + bx + x$ be a non-singular elliptic curve with integral coefficients, and let D be the discriminant of the polynomial, $D = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2$. Any point (x, y) of finite order must have $x, y \in \mathbb{Z}$ and y|D.

Remark.

There is a stronger form of the theorem which includes $y^2|D$.

Example.

The points $\{O, (1, 1), (0, 0), (1, -1)\}$ are the points of finite order on $y^2 = x^3 - x^2 + x$.

1417 2011/155

The Nagell-Lutz Theorem (cont'd)

Example.

Given a prime p, $E(\mathbb{Q})_{\text{tors}}$ for $y^2 = x^3 + px$ is always $\{\mathcal{O}, (0,0)\}$.

The Nagell-Lutz Theorem (cont'd)

Example.

Given a prime p, $E(\mathbb{Q})_{\text{tors}}$ for $y^2 = x^3 + px$ is always $\{\mathcal{O}, (0,0)\}$.

(Mordell's Theorem) Let E be a non-singular elliptic curve with a rational point of order 2. Then $E(\mathbb{Q})$ is a finitely generated abelian group.

Any finitely generated abelian group G can be written as $\mathbb{Z}^r \oplus G_{tors}$, where r is called the rank. The rank can be computed by solving some Diophantine equations.

(Mordell's Theorem) Let E be a non-singular elliptic curve with a rational point of order 2. Then $E(\mathbb{Q})$ is a finitely generated abelian group.

Any finitely generated abelian group G can be written as $\mathbb{Z}^r \oplus G_{\text{tors}}$, where r is called the rank. The rank can be computed by solving some Diophantine equations.

Example.

Given a prime p, the rank of $y^2 = x^3 + px$ is either 0, 1, or 2.

וויו פויוויקי

(Mazur's Theorem) Let *E* be a non-singular cubic curve with rational coefficients, and suppose $P \in E(\mathbb{Q})$ has order *m*. Then either $1 \leq m \leq 10$ or m = 12. The only possible torsion subgroups are isomorphic to $\mathbb{Z}/N\mathbb{Z}$ for $1 \leq N \leq 10$ or N = 12, or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$ for $1 \leq N \leq 4$.

(Mazur's Theorem) Let *E* be a non-singular cubic curve with rational coefficients, and suppose $P \in E(\mathbb{Q})$ has order *m*. Then either $1 \leq m \leq 10$ or m = 12. The only possible torsion subgroups are isomorphic to $\mathbb{Z}/N\mathbb{Z}$ for $1 \leq N \leq 10$ or N = 12, or $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N\mathbb{Z}$ for $1 \leq N \leq 4$.

Genus-degree formula:
$$g = \frac{(d-1)(d-2)}{2}$$
 for curves in \mathbb{P}^2 .

Theorem.

(Falting's Theorem) A curve of genus greater than 1 has only finitely many rational points.

My mentor, Chun Hong Lo

- My mentor, Chun Hong Lo
- My parents

- My mentor, Chun Hong Lo
- My parents
- The PRIMES program

